Formation of Phospholimine and Novel Preparation of Benzofurazans by Thermolytic Rearrangement of N-(o-Nitroaryl)-1,2,5-triphenylphospholimines

By J. I. G. CADOGAN,* R. GEE, and R. J. SCOTT

(Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 311)

Summary Reactions of 1,2,5-triphenylphosphole with aryl-, arylsulphonyl-, methylsulphonyl-, ethoxycarbonyl-, and diphenylphosphinyl-azides readily give the novel 1,2,5-triphenylphospholimines (I; $X = Ar, ArSO_2, MeSO_2,$ EtO₂C, Ph₂PO) which are thermally stable except for *N*-o-nitroaryl derivatives, e.g. (III), which give benzofurazans and 1,2,5-triphenylphosphole oxide, a reaction which does not occur with the corresponding *P*-triphenylor *P*-triethoxy-derivatives [Ph₃P=NAr or (EtO)₃P= NAr].

WE describe a new class of organophosphorus compounds, the phospholimines (I), and also report a new synthesis of benzofurazan (II) via thermolytic rearrangement and fission of N-(o-nitrophenyl)-1,2,5-triphenylphospholimine (III).

Reactions of 1,2,5-triphenylphosphole (1 mol) with aryl-, arylsulphonyl-, diphenylphosphinyl- methylsulphonyl-, and ethoxycarbonyl-azides (1.5 mol), in boiling dioxan or toluene at 100°, readily give the corresponding 1,2,5-triphenylphospholimines [I; X = Ph, p-Me·C₆H₄, p-NO₂·C₆H₄, p-NO₂·C₆H₄, p-I·C₆H₄, p-CO₂Et·C₆H₄, p-Me·C₆H₄, 2-NO₂·C₆H₄, Me·C₆H₃, 2-NO₂-4-MeO·C₆H₃, etc., p-Me·C₆H₄·SO₂, p-NO₂-·C₆H₄·SO₂, Ph₂P(O), MeSO₂, EtO₂C] as crystalline solids in good yields† (usually 40—95%). N-Toluene-p-sulphonyl-1,2,5-triphenylphospholimine (I; X = p-Me·C₆H₄SO₂) was also obtained by reaction of chloramine-T with 1,2,5triphenylphosphole.

These phospholimines are thermally stable, under normal conditions, with the exception of N-(o-nitrophenyl)-

1,2,5-triphenylphospholimine (III) which readily gives 1,2,5-triphenylphosphole oxide (95%) and benzofurazan (60%) on thermolysis in boiling mesitylene. The 4-methyl-2-nitrophenyl- and 4-methoxy-2-nitrophenyl-derivatives also give the corresponding benzofurazans.

Reaction as shown in the Scheme is therefore indicated. That the corresponding triethyl *N*-o-nitrophenylphosphorimidate [(EtO)₃P=NAr] and triphenyl-*N*-o-nitrophenylphosphinimine (Ph₃P=NAr) do not undergo this type of reaction indicates that the phospholimine ylide function is + relatively more polarised (\equiv P-N-). In accord with this *N*-o-nitrophenyl phosphoramidic trichloride (Cl₃P=NAr) also undergoes thermolytic rearrangement to benzofurazan.

(Received, 13th October 1972; Com. 1749.)

† Satisfactory analytical, mass- and/or n.m.r.-spectral data were obtained for all compounds described in this communication.